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In the target rest frame and at high energies, Drell-Yan (DY) dilepton production looks like
bremsstrahlung of massive photons, rather than parton annihilation. The projectile quark is
decomposed into a series of Fock states. Configurations with fixed transverse separations are
interaction eigenstates for pp scattering. The DY cross section can then be expressed in terms
of the same color dipole cross section as DIS. This approach is especially suitable to describe
nuclear effects, since it allows to apply Glauber multiple scattering theory. We go beyond
the Glauber eikonal approximation by taking into account transitions between interaction
eigenstates. We calculate nuclear shadowing at large Feynman-xF for DY in proton-nucleus
collisions, compare to existing data from E772 and make predictions for RHIC. Nuclear effects
on the transverse momentum distribution are also investigated.

1 Introduction

Although cross sections are Lorentz invariant, the partonic interpretation of the microscopic
process depends on the reference frame. As pointed out by one of the authors, in the target
rest frame DY dilepton production should be treated as bremsstrahlung, rather than parton
annihilation 1 (see also 2). The space-time picture of the DY process in the target rest frame
is illustrated in fig. 1. A quark (or an antiquark) from the projectile hadron radiates a virtual
photon on impact on the target. The radiation can occur before or after the quark scatters off
the target. Only the latter case is shown in fig. 1.

A salient feature of the rest frame picture of DY dilepton production is that at high energies
and in impact parameter space the DY cross section can be formulated in terms of the same
dipole cross section as low-xBj DIS.

The color dipole approach to the DY process provides a convenient alternative to the well
known parton model, in particular, it is especially appropriate to describe nuclear effects 1,3.
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Figure 1: A quark (or an antiquark)
inside the projectile hadron scatters
off the target color field and radiates
a massive photon, which subsequently
decays into the lepton pair. The photon
can also be radiated before the quark
hits the target. Here, α is the longitu-
dinal momentum fraction of the quark

carried by the photon.

2 DY dilepton production in pp scattering

The cross section for radiation of a virtual photon from a quark after scattering on a proton,
can be written in factorized light-cone form 1,2,3,

dσ(qp→ γ∗X)
d lnα

=
∫
d2ρ |ΨT,L

γ∗q(α, ρ)|2σqq̄(x2, αρ), (1)

similar to the case of DIS. Here, σqq̄ is the cross section 4 for scattering a qq̄-dipole off a proton
which depends on the qq̄ separation αρ, where ρ is the photon-quark transverse separation and
α is the fraction of the light-cone momentum of the initial quark taken away by the photon. We
use the standard notation for the kinematical variables, x1−x2 = xF , τ = M2/s = x1x2, where
xF is the Feynman variable, s is the center of mass energy squared of the colliding protons and
M is the dilepton mass. In (1) T stands for transverse and L for longitudinal photons.

The physical interpretation of (1) is similar to the DIS case. The projectile quark is expanded
in the interaction eigenstates. We keep here only the first eigenstate,

|q〉 =
√
Z2|qbare〉+ ΨT,L

γ∗q |qγ∗〉+ . . . , (2)

where Z2 is the wavefunction renormalization constant for fermions. In order to produce a new
state the interaction must distinguish between the two Fock states, i.e. they have to interact
differently. Since only the quarks interact in both Fock components the difference arises from
their relative displacement in the transverse plane. If ρ is the transverse separation between the
quark and the photon, the γ∗q fluctuation has a center of gravity in the transverse plane which
coincides with the impact parameter of the parent quark. The transverse separation between
the photon and the center of gravity is (1 − α)ρ and the distance between the quark and the
center of gravity is correspondingly αρ. Therefore, the argument of σqq̄ is αρ. More discussion
can be found in 5.

The transverse momentum distribution of DY pairs can also be expressed in terms of the
dipole cross section 3. The differential cross section is given by the Fourier integral

dσ(qp→ γ∗X)
d lnαd2q⊥

=
1

(2π)2

∫
d2ρ1d

2ρ2 exp[i~q⊥ · (~ρ1 − ~ρ2)]Ψ∗γ∗q(α, ~ρ1)Ψγ∗q(α, ~ρ2)

× 1
2
{σqq̄(x2, αρ1) + σqq̄(x2, αρ2)− σqq̄(x2, α(~ρ1 − ~ρ2))} . (3)

after integrating this expression over the transverse momentum q⊥ of the photon, one obviously
recovers (1).

The LC wavefunctions can be calculated in perturbation theory and are well known 2,5. The
dipole cross section on the other hand is largely unknown. Only at small distances ρ it can



be expressed in terms of the gluon density. However, several successful parameterizations exist
in the literature, describing the entire function σqq̄(x, ρ), without explicitly taking into account
the QCD evolution of the gluon density. We use the parameterization by Golec-Biernat and
Wüsthoff 6 for our calculations, fig. 2. This parameterization vanishes ∝ ρ2 at small distances,
as implied by color transparency 4 and levels off exponentially at large separations. The data
in fig. 2 are quite well described without any K-factor, which does not appear in this approach
since higher order corrections are supposed to be parameterized in σqq̄(x2, ρ).
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Figure 2: The points show the measured DY cross section in p 2H scattering from E772. The curves are calculated
without any further fitting procedure. The solid curves are calculated at the same kinematics as the data points

(center of mass energy
√
s = 38.8 GeV). The dashed curves are calculated for RHIC energy,

√
s = 500 GeV.

3 Proton-nucleus (pA) scattering

Shadowing in DY is an interference phenomenon due to multiple scattering of the projectile quark
inside the nucleus. In the target rest frame, where DY dilepton production is bremsstrahlung of
massive photons, shadowing is the Landau-Pomeranchuk-Migdal (LPM) effect. These interfer-
ences occur (fig. 1), because photons radiated at different longitudinal coordinates z1 and z2 are
not independent of each other. Thus, the amplitudes have to be added coherently. Destructive
interferences can occur only if the longitudinal distance z2 − z1 is smaller than the so called
coherence length lc, which is the time needed to distinguish between a quark and a quark with
a γ∗ nearby. It is given by the uncertainty relation,

lc =
1

∆P−
=

1
mNx2

(1− α)M2

q2
⊥ + (1− α)M2 + α2m2

q

. (4)



Here, ∆P− is the light-cone energy denominator for the transition q → qγ∗ and q⊥ is the relative
transverse momentum of the γ∗q Fock state. For z1− z2 > lc, the radiations are independent of
each other.

An immediate consequence of this is that lc has to be larger than the mean distance between
two scattering centers in the nucleus (∼ 2 fm in the nuclear rest frame). Otherwise, the projectile
quark could not scatter twice within the coherence length and no shadowing would be observed.

We develop a Green function technique 3, which allows one to resum all multiple scattering
terms, similar to Glauber theory, and in addition treats the coherence length exactly. The for-
malism is equivalent to the one proposed in8 for the LPM effect in QED. Our general expression
for the nuclear DY cross section reads

dσ(qA→ γ∗X)
d lnα

= A
dσ(qp→ γ∗X)

d lnα
− 1

2
Re
∫
d2b

∫ ∞
−∞

dz1

∫ ∞
z1

dz2

∫
d2ρ1

∫
d2ρ2

×
[
Ψγ∗q (α, ρ2)

]∗
ρA (b, z2) σqq̄ (x2, αρ2)G (~ρ2, z2 | ~ρ1, z1)

× ρA (b, z1)σqq̄ (x2, αρ1) Ψγ∗q (α, ρ1) . (5)

The first term is just A times the single scattering cross section, where A is the nuclear
mass number. The second term is the shadowing correction. The impact parameter is b and the
nuclear density is ρA. The Green function G describes, how the bremsstrahlungs-amplitude at
z1 interferes with the amplitude at z2.

To make the meaning of Eq. 5 more clear, let us first consider a limiting case for G. In the
simplest case, the coherence length, Eq. 4, is infinitely long and only the double scattering term
is taken into account. Then G (~ρ2, z2 | ~ρ1, z1) = δ(2)(~ρ1 − ~ρ2) and one of the ρ integrations can
be performed. The δ-function means that at very high energy (infinite coherence length) the
transverse size of the γ∗q Fock-state does not vary during propagation through the nucleus, it is
frozen due to Lorentz time dilatation. Furthermore, partonic configurations with fixed transverse
separations in impact parameter space were identified a long time ago 4 in QCD as interaction
eigenstates. This is the reason, why we work in coordinate space. Namely, in coordinate space,
all multiple scattering terms can be resummed and in the limit of infinite lc one obtains

Gfrozen (~ρ2, z2 | ~ρ1, z1) = δ(2)(~ρ1 − ~ρ2) exp
(
−σqq̄(x2, ρ1)

2

∫ z2

z1

dzρA(b, z)
)
. (6)

The frozen approximation is identical to eikonalization of the dipole cross section in Eq. (1).
Thus, the impact parameter representation allows a very simple generalization from a proton to
a nuclear target, provided the coherence length is infinitely long.

At Fermilab fixed-target energies (
√
s = 38.8 GeV for E772), this last condition is not

fulfilled and one has to take a finite lc into account. The problem is however, that lc, Eq. 4,
depends on the relative transverse momentum q⊥ of the γ∗q-fluctuation which is the conjugate
variable to the size ρ of this Fock-state and therefore completely undefined in ρ-representation.
The quantum mechanically correct way to treat the q2

⊥ in Eq. 4 is to represent it by a two-
dimensional Laplacian ∆⊥ in ρ-space. The Green function which contains the correct, finite
coherence length and resums all multiple scattering terms fulfills a two-dimensional Schrödinger
equation with an imaginary potential,[

i
∂

∂z2
+

∆⊥ (ρ2)− η2

2Eqα (1− α)
+

i
2
ρA (b, z2) σqq̄ (x2, αρ2)

]
G (~ρ2, z2 | ~ρ1, z1)

= iδ (z2 − z1) δ(2) (~ρ2 − ~ρ1) . (7)

For details of the derivation, we refer to 3.



0.9

1

1.1

0.01 0.1

Fe / D

x2

2 
σA

/ A
 σ

D

0.1

0.9

1

1.1
W / D

x2

2 
σA

/ A
 σ

D

0.9

1

1.1

0.01 0.1

C / D

x2

2 
σA

/ A
 σ

D

0.9

1

1.1

0.1

Ca / D

x2

2 
σA

/ A
 σ

D
Figure 3: Comparison between calculations
in the Green function technique and E772
data at center of mass energy

√
s = 38.8

GeV. for shadowing in DY. The calcula-
tions are performed at the mean values of
the lepton pair mass. From the left to the
right, these values are 5 GeV, 5.7 GeV, and

6.5 GeV.

The imaginary potential accounts for all higher order scattering terms. The Laplacian implies
that the Green function is no longer proportional to a δ-function. This means the size of the γ∗q
fluctuation is no longer constant during propagation through the nucleus. One can say that an
eigenstate of size ρ1 evolves to an eigenstate of size ρ2 6= ρ1, so transitions between eigenstates
occur.

Calculations 10 with Eqs. 5 and 7 are compared to E772 data 9 in fig. 3. Note that the
coherence length lc at E772 energy becomes smaller than the nuclear radius. Shadowing vanishes
as x2 approaches 0.1, because the coherence length becomes smaller than the mean internucleon
separation. It is therefore important to have a correct description of a finite lc in this energy
range.

Nuclear effects on the q⊥-differential cross section calculated at RHIC energy are shown in
fig. 4. See 3 for details of the calculation. The differential cross section is suppressed at small
transverse momentum q⊥ of the dilepton, where large values of ρ dominate. This suppression
vanishes at intermediate q⊥ ∼ 2 GeV. In this region, one even observes an enhancement which
reminds one of the Cronin effect. This enhancement is due to multiple scattering of the quark
inside the nucleus. A nuclear target provides a larger momentum transfer than a proton target
and harder fluctuations are freed, which leads to nuclear broadening. Note, that not the entire
suppression at low q⊥ is due to shadowing. Some of the dileptons missing at low q⊥ reappear in
this enhancement region. At very large transverse momentum nuclear effects vanish.

4 Summary

We express the DY cross section in terms of the cross section σqq̄ for scattering a qq̄ dipole off
a proton. This is the same dipole cross section that appears in DIS. We can reasonably well
describe low x2 DY data from pp collisions 7, without any free parameters and without a K
factor.

At very high energy, the dipole approach is easily extended to nuclear targets by eikonaliza-
tion. At lower fixed target energies (E772) the frozen approximation is no longer valid, because
the size of a Fock state varies during propagation through the nucleus. Therefore, transitions
between interaction eigenstates (i.e. partonic configurations with fixed transverse separations)
occur.
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Figure 4: Nuclear effects on the DY
transverse momentum distribution at RHIC
energy (

√
s = 200 GeV) for carbon and lead.

The figure shows the DY cross section ratio
(dσA/dxFdM

2d2q⊥)/(Adσp/dxFdM
2d2q⊥)

for dilepton mass M = 5 GeV and Feynman
xF = 0.6. Here, q⊥ = qT is the transverse

momentum of the lepton pair.

We develop a Green function technique, which takes variations of the transverse size into
account and resums all multiple scattering terms as well. Calculations with the Green function
technique are in good agreement with DY shadowing data from E772. We have also calculated
nuclear effects in the transverse momentum distribution of DY pairs at RHIC energy. The DY
cross section is suppressed at low transverse momentum, but enhanced at intermediate q⊥ ∼ 2
GeV. Nuclear effects vanish at very large q⊥.
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